Abstract
This study demonstrated that a crossbridge model incorporating multiple shortening steps per ATP hydrolysis cycle is consistent with experimental observations of myocardial dynamic stiffness for oscillation amplitudes that are large (i.e., up to 6%) relative to the molecular scale. Such a model also appears consistent with cardiac energetics, and may offer an improved representation of myocardial actomyosin kinetics.
Original language | English (US) |
---|---|
Pages (from-to) | 85-86 |
Number of pages | 2 |
Journal | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Volume | 17 |
Issue number | 1 |
State | Published - 1995 |
Externally published | Yes |
Event | Proceedings of the 1995 IEEE Engineering in Medicine and Biology 17th Annual Conference and 21st Canadian Medical and Biological Engineering Conference. Part 2 (of 2) - Montreal, Can Duration: Sep 20 1995 → Sep 23 1995 |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics