TY - JOUR
T1 - Quantification of Oculomotor Responses and Accommodation through Instrumentation and Analysis Toolboxes
AU - Fine, Sebastian N.
AU - Guo, Yi
AU - Talasan, Henry
AU - Lestrange, Stephen
AU - Yaramothu, Chang
AU - Alvarez, Tara L.
N1 - Funding Information:
This research was supported by National Institutes of Health grant R01EY023261 to T.L.A. and a Barry Goldwater Scholarship and NJIT Provost Doctoral Award to S.N.F.
Publisher Copyright:
© 2023 JoVE Journal of Visualized Experiments.
PY - 2023/3
Y1 - 2023/3
N2 - Through the purposeful stimulation and recording of eye movements, the fundamental characteristics of the underlying neural mechanisms of eye movements can be observed. VisualEyes2020 (VE2020) was developed based on the lack of customizable software-based visual stimulation available for researchers that does not rely on motors or actuators within a traditional haploscope. This new instrument and methodology have been developed for a novel haploscope configuration utilizing both eye tracking and autorefractor systems. Analysis software that enables the synchronized analysis of eye movement and accommodative responses provides vision researchers and clinicians with a reproducible environment and shareable tool. The Vision and Neural Engineering Laboratory's (VNEL) Eye Movement Analysis Program (VEMAP) was established to process recordings produced by VE2020's eye trackers, while the Accommodative Movement Analysis Program (AMAP) was created to process the recording outputs from the corresponding autorefractor system. The VNEL studies three primary stimuli: accommodation (blur-driven changes in the convexity of the intraocular lens), vergence (inward, convergent rotation and outward, divergent rotation of the eyes), and saccades (conjugate eye movements). The VEMAP and AMAP utilize similar data flow processes, manual operator interactions, and interventions where necessary; however, these analysis platforms advance the establishment of an objective software suite that minimizes operator reliance. The utility of a graphical interface and its corresponding algorithms allow for a broad range of visual experiments to be conducted with minimal required prior coding experience from its operator(s).
AB - Through the purposeful stimulation and recording of eye movements, the fundamental characteristics of the underlying neural mechanisms of eye movements can be observed. VisualEyes2020 (VE2020) was developed based on the lack of customizable software-based visual stimulation available for researchers that does not rely on motors or actuators within a traditional haploscope. This new instrument and methodology have been developed for a novel haploscope configuration utilizing both eye tracking and autorefractor systems. Analysis software that enables the synchronized analysis of eye movement and accommodative responses provides vision researchers and clinicians with a reproducible environment and shareable tool. The Vision and Neural Engineering Laboratory's (VNEL) Eye Movement Analysis Program (VEMAP) was established to process recordings produced by VE2020's eye trackers, while the Accommodative Movement Analysis Program (AMAP) was created to process the recording outputs from the corresponding autorefractor system. The VNEL studies three primary stimuli: accommodation (blur-driven changes in the convexity of the intraocular lens), vergence (inward, convergent rotation and outward, divergent rotation of the eyes), and saccades (conjugate eye movements). The VEMAP and AMAP utilize similar data flow processes, manual operator interactions, and interventions where necessary; however, these analysis platforms advance the establishment of an objective software suite that minimizes operator reliance. The utility of a graphical interface and its corresponding algorithms allow for a broad range of visual experiments to be conducted with minimal required prior coding experience from its operator(s).
UR - http://www.scopus.com/inward/record.url?scp=85150751070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85150751070&partnerID=8YFLogxK
U2 - 10.3791/64808
DO - 10.3791/64808
M3 - Article
C2 - 36939267
AN - SCOPUS:85150751070
SN - 1940-087X
VL - 2023
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 193
M1 - e64808
ER -