TY - GEN
T1 - Query processing over incomplete autonomous databases
AU - Wolf, Garrett
AU - Khatri, Hemal
AU - Chokshi, Bhaumik
AU - Fan, Jianchun
AU - Chen, Yi
AU - Kambhampati, Subbarao
N1 - Publisher Copyright:
Copyright 2007 VLDB Endowment, ACM.
PY - 2007
Y1 - 2007
N2 - Incompleteness due to missing attribute values (aka "null values") is very common in autonomous web databases, on which user accesses are usually supported through mediators. Traditional query processing techniques that focus on the strict soundness of answer tuples often ignore tuples with critical missing attributes, even if they wind up being relevant to a user query. Ideally we would like the mediator to retrieve such possible answers and gauge their relevance by accessing their likelihood of being pertinent answers to the query. The autonomous nature of web databases poses several challenges in realizing this objective. Such challenges include the restricted access privileges imposed on the data, the limited support for query patterns, and the bounded pool of database and network resources in the web environment. We introduce a novel query rewriting and optimization framework QPIAD that tackles these challenges. Our technique involves reformulating the user query based on mined correlations among the database attributes. The reformulated queries are aimed at retrieving the relevant possible answers in addition to the certain answers. QPIAD is able to gauge the relevance of such queries allowing tradeoffs in reducing the costs of database query processing and answer transmission. To support this framework, we develop methods for mining attribute correlations (in terms of Approximate Functional Dependencies), value distributions (in the form of Naïve Bayes Classifiers), and selectivity estimates. We present empirical studies to demonstrate that our approach is able to effectively retrieve relevant possible answers with high precision, high recall, and manageable cost.
AB - Incompleteness due to missing attribute values (aka "null values") is very common in autonomous web databases, on which user accesses are usually supported through mediators. Traditional query processing techniques that focus on the strict soundness of answer tuples often ignore tuples with critical missing attributes, even if they wind up being relevant to a user query. Ideally we would like the mediator to retrieve such possible answers and gauge their relevance by accessing their likelihood of being pertinent answers to the query. The autonomous nature of web databases poses several challenges in realizing this objective. Such challenges include the restricted access privileges imposed on the data, the limited support for query patterns, and the bounded pool of database and network resources in the web environment. We introduce a novel query rewriting and optimization framework QPIAD that tackles these challenges. Our technique involves reformulating the user query based on mined correlations among the database attributes. The reformulated queries are aimed at retrieving the relevant possible answers in addition to the certain answers. QPIAD is able to gauge the relevance of such queries allowing tradeoffs in reducing the costs of database query processing and answer transmission. To support this framework, we develop methods for mining attribute correlations (in terms of Approximate Functional Dependencies), value distributions (in the form of Naïve Bayes Classifiers), and selectivity estimates. We present empirical studies to demonstrate that our approach is able to effectively retrieve relevant possible answers with high precision, high recall, and manageable cost.
UR - http://www.scopus.com/inward/record.url?scp=85011056304&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011056304&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85011056304
T3 - 33rd International Conference on Very Large Data Bases, VLDB 2007 - Conference Proceedings
SP - 651
EP - 662
BT - 33rd International Conference on Very Large Data Bases, VLDB 2007 - Conference Proceedings
A2 - Gehrke, Johannes
A2 - Koch, Christoph
A2 - Garofalakis, Minos
A2 - Aberer, Karl
A2 - Kanne, Carl-Christian
A2 - Neuhold, Erich J.
A2 - Ganti, Venkatesh
A2 - Klas, Wolfgang
A2 - Chan, Chee-Yong
A2 - Srivastava, Divesh
A2 - Florescu, Dana
A2 - Deshpande, Anand
PB - Association for Computing Machinery, Inc
T2 - 33rd International Conference on Very Large Data Bases, VLDB 2007
Y2 - 23 September 2007 through 27 September 2007
ER -