Reactive AI-Li powders prepared by mechanical alloying

Xiaoying Zhu, Mirko Schoenitz, Vern K. Hoffmann, Edward L. Dreizin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Mechanically alloyed powders with the composition Al 0.7Li 0.3 are synthesized. Materials milled for different times are studied using electron microscopy, x-ray diffraction, and thermal analysis. A solid solution of Li in Al (α-phase) is formed with as much as 10 at % of dissolved Li. The LiAl intermetallic δ-phase is readily produced by mechanical alloying but disappears after extended milling times. The final product of milling for 102 hours consists of an x-ray amorphous phase. Mechanically alloyed powders heated in inert environment exhibit several weak exothermic reactions between 420 and 700 K, and two endothermic reactions, around 810 and 870 K. All the observed relaxation processes become less pronounced and eventually become undetectable as the milling time increases and an amorphous material is produced. Ignition experiments performed for the powders coated on an electrically heated filament showed that the powders ignited in the vicinity of 1250 K. An experimental setup for studying combustion of reactive mechanically alloyed powders is developed and initial experimental results are described.

Original languageEnglish (US)
Title of host publicationMultifunctional Energetic Materials
Pages39-44
Number of pages6
StatePublished - Jun 2 2006
Event2005 Materials Research Society Fall Meeting - Boston, MA, United States
Duration: Nov 28 2005Dec 1 2005

Publication series

NameMaterials Research Society Symposium Proceedings
Volume896
ISSN (Print)0272-9172

Other

Other2005 Materials Research Society Fall Meeting
CountryUnited States
CityBoston, MA
Period11/28/0512/1/05

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Reactive AI-Li powders prepared by mechanical alloying'. Together they form a unique fingerprint.

Cite this