TY - JOUR
T1 - Reactive Structural Materials
T2 - Preparation and Characterization
AU - Hastings, Daniel L.
AU - Dreizin, Edward L.
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/3
Y1 - 2018/3
N2 - Reactive structural materials, which can serve both as structural elements as well as a source of chemical energy released upon initiation have emerged as an important class of metal-based composites for use in various energetic systems. Such materials rely on a variety of exothermic reactions, from oxidation to formation of metal-metalloid and intermetallic phases. The rates of these reactions are as important as the energy that may be released, in order for them to occur at the time scales compatible with the requirements of applications. Therefore, chemical composition, scale at which reactive components are mixed, and the structure and morphology of materials are important and can be controlled by the method of preparation and compaction of the composite materials. Methods of preparation of the composite structures are briefly reviewed as well as methods of characterization of their mechanical and energetic properties. In addition to common thermo-analytical and static mechanical property measurements, dynamic tests of mechanical properties as well as ignition and combustion experiments are necessary to understand the fragmentation, initiation, and heat release expected for these materials when they are stimulated by an impact, shock, or rapid heating. Reaction mechanisms are studied presently for the thin layers and small samples of reactive materials initiated in carefully designed experiments. In other experiments, impact and explosive initiation are characterized for larger material compacts in the conditions imitating practical scenarios. Examples of results describing thermal, impact, and explosive initiation of some of the reactive materials are presented.
AB - Reactive structural materials, which can serve both as structural elements as well as a source of chemical energy released upon initiation have emerged as an important class of metal-based composites for use in various energetic systems. Such materials rely on a variety of exothermic reactions, from oxidation to formation of metal-metalloid and intermetallic phases. The rates of these reactions are as important as the energy that may be released, in order for them to occur at the time scales compatible with the requirements of applications. Therefore, chemical composition, scale at which reactive components are mixed, and the structure and morphology of materials are important and can be controlled by the method of preparation and compaction of the composite materials. Methods of preparation of the composite structures are briefly reviewed as well as methods of characterization of their mechanical and energetic properties. In addition to common thermo-analytical and static mechanical property measurements, dynamic tests of mechanical properties as well as ignition and combustion experiments are necessary to understand the fragmentation, initiation, and heat release expected for these materials when they are stimulated by an impact, shock, or rapid heating. Reaction mechanisms are studied presently for the thin layers and small samples of reactive materials initiated in carefully designed experiments. In other experiments, impact and explosive initiation are characterized for larger material compacts in the conditions imitating practical scenarios. Examples of results describing thermal, impact, and explosive initiation of some of the reactive materials are presented.
KW - composite materials
KW - ignition
KW - intermetallics
KW - metal combustion
KW - thermal analysis
KW - thermites
UR - http://www.scopus.com/inward/record.url?scp=85043704234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043704234&partnerID=8YFLogxK
U2 - 10.1002/adem.201700631
DO - 10.1002/adem.201700631
M3 - Review article
AN - SCOPUS:85043704234
SN - 1438-1656
VL - 20
JO - Advanced Engineering Materials
JF - Advanced Engineering Materials
IS - 3
M1 - 1700631
ER -