TY - GEN
T1 - Recommendation of Academic Papers based on Heterogeneous Information Networks
AU - Du, Nana
AU - Guo, Jun
AU - Wu, Chase Q.
AU - Hou, Aiqin
AU - Zhao, Zimin
AU - Gan, Daguang
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/11
Y1 - 2020/11
N2 - The rapid advance in science and technology is made possible by research conduct and breakthroughs in a wide range of fields, which have resulted in a large number of academic papers. Searching through the enormous literature to find relevant information of one's research interest has become an increasingly important yet challenging problem for many researchers. Most existing methods for academic paper recommendation are based on the analysis of paper contents and only meet with limited success. We propose a novel method based on heterogeneous information networks for academic paper recommendation, referred to as HNPR. This method considers the citation relationship between papers, the collaboration relationship between authors, and the research area information of papers to construct two types of heterogeneous information networks. In such networks, a random walk-based strategy is used to simulate natural sentences for the discovery of relevance between two papers according to a mature natural language processing model. Extensive experimental results using real data in public digital libraries show that HNPR significantly improves the accuracy of academic paper recommendation in comparison with traditional content-based recommendation methods.
AB - The rapid advance in science and technology is made possible by research conduct and breakthroughs in a wide range of fields, which have resulted in a large number of academic papers. Searching through the enormous literature to find relevant information of one's research interest has become an increasingly important yet challenging problem for many researchers. Most existing methods for academic paper recommendation are based on the analysis of paper contents and only meet with limited success. We propose a novel method based on heterogeneous information networks for academic paper recommendation, referred to as HNPR. This method considers the citation relationship between papers, the collaboration relationship between authors, and the research area information of papers to construct two types of heterogeneous information networks. In such networks, a random walk-based strategy is used to simulate natural sentences for the discovery of relevance between two papers according to a mature natural language processing model. Extensive experimental results using real data in public digital libraries show that HNPR significantly improves the accuracy of academic paper recommendation in comparison with traditional content-based recommendation methods.
KW - Heterogeneous information networks
KW - academic paper recommendation
KW - natural language model
KW - random walk
UR - http://www.scopus.com/inward/record.url?scp=85099792831&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099792831&partnerID=8YFLogxK
U2 - 10.1109/AICCSA50499.2020.9316516
DO - 10.1109/AICCSA50499.2020.9316516
M3 - Conference contribution
AN - SCOPUS:85099792831
T3 - Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA
BT - 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications, AICCSA 2020
PB - IEEE Computer Society
T2 - 17th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2020
Y2 - 2 November 2020 through 5 November 2020
ER -