TY - GEN
T1 - ReDRAM
T2 - 38th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2019
AU - Angizi, Shaahin
AU - Fan, Deliang
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/11
Y1 - 2019/11
N2 - In this paper, we propose ReDRAM, as a reconfigurable DRAM-based processing-in-memory (PIM) accelerator, which transforms current DRAM architecture to massively parallel computational units exploiting the high internal bandwidth of modern memory chips. ReDRAM uses the analog operation of DRAM sub-arrays and elevates it to implement a full set of 1-and 2-input bulk bit-wise operations (NOT, (N)AND, (N)OR, and even X(N)OR) between operands stored in the same bit-line, based on a new dual-row activation mechanism with a modest change to peripheral circuits such sense amplifiers. ReDRAM can be leveraged to greatly reduce energy consumption and latency of complex in-DRAM logic computations relying on state-of-the-art mechanisms based on triple-row activation, dual-contact cells, row initialization, NOR style, etc. The extensive circuit-architecture simulations show that ReDRAM achieves on average 54× and 7.1× higher throughput for performing bulk bit-wise operations compared with CPU and GPU, respectively. Besides, ReDRAM outperforms recent processing-in-DRAM platforms with up to 3.7× better performance.
AB - In this paper, we propose ReDRAM, as a reconfigurable DRAM-based processing-in-memory (PIM) accelerator, which transforms current DRAM architecture to massively parallel computational units exploiting the high internal bandwidth of modern memory chips. ReDRAM uses the analog operation of DRAM sub-arrays and elevates it to implement a full set of 1-and 2-input bulk bit-wise operations (NOT, (N)AND, (N)OR, and even X(N)OR) between operands stored in the same bit-line, based on a new dual-row activation mechanism with a modest change to peripheral circuits such sense amplifiers. ReDRAM can be leveraged to greatly reduce energy consumption and latency of complex in-DRAM logic computations relying on state-of-the-art mechanisms based on triple-row activation, dual-contact cells, row initialization, NOR style, etc. The extensive circuit-architecture simulations show that ReDRAM achieves on average 54× and 7.1× higher throughput for performing bulk bit-wise operations compared with CPU and GPU, respectively. Besides, ReDRAM outperforms recent processing-in-DRAM platforms with up to 3.7× better performance.
UR - http://www.scopus.com/inward/record.url?scp=85077789605&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077789605&partnerID=8YFLogxK
U2 - 10.1109/ICCAD45719.2019.8942101
DO - 10.1109/ICCAD45719.2019.8942101
M3 - Conference contribution
AN - SCOPUS:85077789605
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
BT - 2019 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2019 - Digest of Technical Papers
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 4 November 2019 through 7 November 2019
ER -