Abstract
The properties of a composite material are determined not only by the constitutive properties of the matrix and the reinforcement, but also by the type and nature of interfacial bonding between them. For thermo-mechanical applications, the influence of interfaces and interphases is fundamental. In this work, we comprehensively study the copper alloy/carbon fiber composite material interfaces, with and without interphases, in terms of microstructural and chemical properties at the micro-and nanometric scales. These properties are then correlated with the local mechanical properties as determined by nanoindentation, enabling us to establish a direct relationship between the chemistry and mechanical properties at the microscale. In addition to experimental measurements, three-dimensional finite element simulations are performed on the matrix/interphase/reinforcement system, and the results between experiments and simulations show very good agreement, validating our basic hypothesis that the local mechanical properties are determined by the material chemistry.
Original language | English (US) |
---|---|
Pages (from-to) | 1445-1455 |
Number of pages | 11 |
Journal | Acta Materialia |
Volume | 59 |
Issue number | 4 |
DOIs | |
State | Published - Feb 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys
Keywords
- Finite element analysis
- Interfaces
- Metal matrix composite (MMC)
- Microstructure
- Nanoindentation