TY - GEN
T1 - Remapping in the ipsilesional motor cortex after VR-based training
T2 - 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
AU - Tunik, Eugene
AU - Adamovich, Sergei V.
PY - 2009
Y1 - 2009
N2 - In a single case longitudinal study, a 70 year old female subject who has had a subcortical stroke 8 years prior, was tested three times in fMRI using an interactive MRI-compatible VR environment. The subject performed sequential finger movements with her right (unaffected) hand. Her hand motion (recorded with the data glove) animated either the ipsilateral (corresponding) or contralateral (mirrored) virtual hand model. In a visual feedback control condition, the virtual hand models were replaced with ellipsoids. In between the second and third session, the patient participated in an intensive, two-week long VR-based training of her affected upper extremity. When comparing activation in the mirrored versus the non-mirrored virtual visual feedback condition, no significant activation was noted in motor or premotor areas in the baseline 1 or baseline 2 sessions. However, increased activation in the ipsilesional motor cortex occurred as a result of training, despite the absence of active involvement of the ipsilesional motor cortex in this condition. The left motor cortex was also recruited in this condition (though weaker) despite the subtracted out ellipsoid condition (in which subjects also moved their hand). Thus, the contralateral (mirrored) visual feedback may have had a facilitory effect bilaterally. These findings might have some important implications for the development of novel therapies in the acute phase, when paresis and the potential for neural remapping are greatest.
AB - In a single case longitudinal study, a 70 year old female subject who has had a subcortical stroke 8 years prior, was tested three times in fMRI using an interactive MRI-compatible VR environment. The subject performed sequential finger movements with her right (unaffected) hand. Her hand motion (recorded with the data glove) animated either the ipsilateral (corresponding) or contralateral (mirrored) virtual hand model. In a visual feedback control condition, the virtual hand models were replaced with ellipsoids. In between the second and third session, the patient participated in an intensive, two-week long VR-based training of her affected upper extremity. When comparing activation in the mirrored versus the non-mirrored virtual visual feedback condition, no significant activation was noted in motor or premotor areas in the baseline 1 or baseline 2 sessions. However, increased activation in the ipsilesional motor cortex occurred as a result of training, despite the absence of active involvement of the ipsilesional motor cortex in this condition. The left motor cortex was also recruited in this condition (though weaker) despite the subtracted out ellipsoid condition (in which subjects also moved their hand). Thus, the contralateral (mirrored) visual feedback may have had a facilitory effect bilaterally. These findings might have some important implications for the development of novel therapies in the acute phase, when paresis and the potential for neural remapping are greatest.
UR - http://www.scopus.com/inward/record.url?scp=77950993757&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950993757&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2009.5335392
DO - 10.1109/IEMBS.2009.5335392
M3 - Conference contribution
C2 - 19965144
AN - SCOPUS:77950993757
SN - 9781424432967
T3 - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
SP - 1139
EP - 1142
BT - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PB - IEEE Computer Society
Y2 - 2 September 2009 through 6 September 2009
ER -