Abstract
Natural polysaccharides like chitosan and dextran have garnered considerable interest in biomedical applications due to their biocompatibility, biodegradability, and nontoxicity. Nonetheless, the development of a reproducible class of medical devices from these materials is challenging and has had limited success. Chitosan and dextran are inherently variable and synthesis using these materials is prone to inconsistencies. In this study, we put forward a robust product development regimen that allows these natural materials to be developed into a reproducible class of biomaterials. First, an array of validated characterization methods (Proton Nuclear Magnetic Resonance, titrations, Ultraviolet spectroscopy, Size Exclusion Chromatography—Multi-Angle Light Scattering, Size Exclusion Chromatography—Refractive Index, and proprietary methods) were developed that allowed rigorous specifications to be set for unprocessed chitosan and dextran, chitosan and dextran intermediates, and chemically modified materials—acrylated chitosan (aCHN) and oxidized dextran (oDEX). Second, a robust and reproducible synthesis scheme involving various in-process controls was developed to chemically modify the unprocessed polysaccharides. Third, purification methods to remove byproducts and low-molecular-weight impurities for both aCHN and oDEX were developed. The study presents a viable strategy for converting variable, natural materials into a reproducible class of biomaterials that can be applied in various biomedical applications.
Original language | English (US) |
---|---|
Article number | 48454 |
Journal | Journal of Applied Polymer Science |
Volume | 137 |
Issue number | 11 |
DOIs | |
State | Published - Mar 15 2020 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Surfaces, Coatings and Films
- Polymers and Plastics
- Materials Chemistry
Keywords
- chitosan
- controlled chemical modifications
- dextran
- hydrogel devices
- medical device
- polysaccharides