Reverse edge cut-set bounds for secure network coding

Wentao Huang, Tracey Ho, Michael Langberg, Joerg Kliewer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We consider the problem of secure communication over a network in the presence of wiretappers. We give a new cut-set bound on secrecy capacity which takes into account the contribution of both forward and backward edges crossing the cut, and the connectivity between their endpoints in the rest of the network. We show the bound is tight on a class of networks, which demonstrates that it is not possible to find a tighter bound by considering only cut-set edges and their connectivity.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages106-110
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2014 IEEE International Symposium on Information Theory, ISIT 2014
CountryUnited States
CityHonolulu, HI
Period6/29/147/4/14

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Reverse edge cut-set bounds for secure network coding'. Together they form a unique fingerprint.

Cite this