Review of Solar Energetic Particle Prediction Models

Kathryn Whitman, Ricky Egeland, Ian G. Richardson, Clayton Allison, Philip Quinn, Janet Barzilla, Irina Kitiashvili, Viacheslav Sadykov, Hazel M. Bain, Mark Dierckxsens, M. Leila Mays, Tilaye Tadesse, Kerry T. Lee, Edward Semones, Janet G. Luhmann, Marlon Núñez, Stephen M. White, Stephen W. Kahler, Alan G. Ling, Don F. SmartMargaret A. Shea, Valeriy Tenishev, Soukaina F. Boubrahimi, Berkay Aydin, Petrus Martens, Rafal Angryk, Michael S. Marsh, Silvia Dalla, Norma Crosby, Nathan A. Schwadron, Kamen Kozarev, Matthew Gorby, Matthew A. Young, Monica Laurenza, Edward W. Cliver, Tommaso Alberti, Mirko Stumpo, Simone Benella, Athanasios Papaioannou, Anastasios Anastasiadis, Ingmar Sandberg, Manolis K. Georgoulis, Anli Ji, Dustin Kempton, Chetraj Pandey, Gang Li, Junxiang Hu, Gary P. Zank, Eleni Lavasa, Giorgos Giannopoulos, David Falconer, Yash Kadadi, Ian Fernandes, Maher A. Dayeh, Andrés Muñoz-Jaramillo, Subhamoy Chatterjee, Kimberly D. Moreland, Igor V. Sokolov, Ilia I. Roussev, Aleksandre Taktakishvili, Frederic Effenberger, Tamas Gombosi, Zhenguang Huang, Lulu Zhao, Nicolas Wijsen, Angels Aran, Stefaan Poedts, Athanasios Kouloumvakos, Miikka Paassilta, Rami Vainio, Anatoly Belov, Eugenia A. Eroshenko, Maria A. Abunina, Artem A. Abunin, Christopher C. Balch, Olga Malandraki, Michalis Karavolos, Bernd Heber, Johannes Labrenz, Patrick Kühl, Alexander G. Kosovichev, Vincent Oria, Gelu M. Nita, Egor Illarionov, Patrick M. O'Keefe, Yucheng Jiang, Sheldon H. Fereira, Aatiya Ali, Evangelos Paouris, Sigiava Aminalragia-Giamini, Piers Jiggens, Meng Jin, Christina O. Lee, Erika Palmerio, Alessandro Bruno, Spiridon Kasapis, Xiantong Wang, Yang Chen, Blai Sanahuja, David Lario, Carla Jacobs, Du Toit Strauss, Ruhann Steyn, Jabus van den Berg, Bill Swalwell, Charlotte Waterfall, Mohamed Nedal, Rositsa Miteva, Momchil Dechev, Pietro Zucca, Alec Engell, Brianna Maze, Harold Farmer, Thuha Kerber, Ben Barnett, Jeremy Loomis, Nathan Grey, Barbara J. Thompson, Jon A. Linker, Ronald M. Caplan, Cooper Downs, Tibor Török, Roberto Lionello, Viacheslav Titov, Ming Zhang, Pouya Hosseinzadeh

Research output: Contribution to journalReview articlepeer-review

40 Scopus citations

Abstract

Solar Energetic Particle (SEP) events are interesting from a scientific perspective as they are the product of a broad set of physical processes from the corona out through the extent of the heliosphere, and provide insight into processes of particle acceleration and transport that are widely applicable in astrophysics. From the operations perspective, SEP events pose a radiation hazard for aviation, electronics in space, and human space exploration, in particular for missions outside of the Earth's protective magnetosphere including to the Moon and Mars. Thus, it is critical to improve the scientific understanding of SEP events and use this understanding to develop and improve SEP forecasting capabilities to support operations. Many SEP models exist or are in development using a wide variety of approaches and with differing goals. These include computationally intensive physics-based models, fast and light empirical models, machine learning-based models, and mixed-model approaches. The aim of this paper is to summarize all of the SEP models currently developed in the scientific community, including a description of model approach, inputs and outputs, free parameters, and any published validations or comparisons with data.

Original languageEnglish (US)
Pages (from-to)5161-5242
Number of pages82
JournalAdvances in Space Research
Volume72
Issue number12
DOIs
StatePublished - Dec 15 2023

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Geophysics
  • Atmospheric Science
  • Space and Planetary Science
  • General Earth and Planetary Sciences

Keywords

  • SEP models
  • Solar energetic particles
  • Space radiation
  • Space weather forecasting
  • Space weather models

Fingerprint

Dive into the research topics of 'Review of Solar Energetic Particle Prediction Models'. Together they form a unique fingerprint.

Cite this