Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with cerebral palsy

Qinyin Qiu, Gerard G. Fluet, Soha Saleh, Diego Ramirez, Sergei Adamovich

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

This paper will describe the NJIT-RAVR system, which combines adaptive robotics with complex VR simulations for the rehabilitation of upper extremity impairments and function in children with CP. The feasibility of this system is examined in the context of two pilot studies. The NJIT-RAVR system consists of the Haptic Master, a 6 degrees of freedom, admittance controlled robot and a suite of rehabilitation simulations that we have developed. The system provides adaptive algorithms for the Haptic Master, allowing impaired users to interact with rich virtual environments. All subjects trained with the NJIT-RAVR System for one hour, 3 days a week for three weeks. Both groups improved in robotically collected kinematic measures and the Melbourne Assessment of Unilateral Upper Limb Function.

Original languageEnglish (US)
Title of host publicationProceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010
DOIs
StatePublished - 2010
Event36th Annual Northeast Bioengineering Conference, NEBEC 2010 - New York, NY, United States
Duration: Mar 26 2010Mar 28 2010

Publication series

NameProceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010

Other

Other36th Annual Northeast Bioengineering Conference, NEBEC 2010
Country/TerritoryUnited States
CityNew York, NY
Period3/26/103/28/10

All Science Journal Classification (ASJC) codes

  • Bioengineering

Fingerprint

Dive into the research topics of 'Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with cerebral palsy'. Together they form a unique fingerprint.

Cite this