Abstract
An important consideration in similarity-based retrieval of moving object trajectories is the definition of a distance function. The existing distance functions are usually sensitive to noise, shifts and scaling of data that commonly occur due to sensor failures, errors in detection techniques, disturbance signals, and different sampling rates. Cleaning data to eliminate these is not always possible. In this paper, we introduce a novel distance function, Edit Distance on Real sequence (EDR) which is robust against these data imperfections. Analysis and comparison of EDR with other popular distance functions, such as Euclidean distance, Dynamic Time Warping (DTW), Edit distance with Real Penalty (ERP), and Longest Common Subsequences (LCSS), indicate that EDR is more robust than Euclidean distance, DTW and ERP, and it is on average 50% more accurate than LCSS. We also develop three pruning techniques to improve the retrieval efficiency of EDR and show that these techniques can be combined effectively in a search, increasing the pruning power significantly. The experimental results confirm the superior efficiency of the combined methods.
Original language | English (US) |
---|---|
Pages (from-to) | 491-502 |
Number of pages | 12 |
Journal | Proceedings of the ACM SIGMOD International Conference on Management of Data |
DOIs | |
State | Published - 2005 |
Event | SIGMOD 2005: ACM SIGMOD International Conference on Management of Data - Baltimore, MD, United States Duration: Jun 14 2005 → Jun 16 2005 |
All Science Journal Classification (ASJC) codes
- Software
- Information Systems