Abstract
This work studies the robust design of linear precoding and linear/ non-linear equalization for multi-cell MIMO systems in the presence of imperfect channel state information (CSI). A worst-case design approach is adopted whereby the CSI error is assumed to lie within spherical sets of known radius. First, the optimal robust design of linear precoders is tackled for a MIMO interference broadcast channel (MIMO-IBC) with general unicast/multicast messages in each cell and operating over multiple time-frequency resources. This problem is formulated as the maximization of the worst-case sum-rate assuming optimal detection at the mobile stations (MSs). Then, symbol-by-symbol non-linear equalization at the MSs is considered. In this case, the problem of jointly optimizing linear precoding and decision-feedback (DF) equalization is investigated for a MIMO interference channel (MIMO-IC) with the goal of minimizing the worst-case sum-mean squared error (MSE). Both problems are addressed by proposing iterative algorithms with descent properties. The algorithms are also shown to be implementable in a distributed fashion on processors that have only local and partial CSI by means of the Alternating Direction Method of Multipliers (ADMM). From numerical results, it is shown that the proposed robust solutions significantly improve over conventional non-robust schemes in terms of sum-rate or symbol error rate. Moreover, it is seen that the proposed joint design of linear precoding and DF equalization outperforms existing separate solutions.
Original language | English (US) |
---|---|
Pages (from-to) | 133-149 |
Number of pages | 17 |
Journal | Journal of Signal Processing Systems |
Volume | 83 |
Issue number | 2 |
DOIs | |
State | Published - May 1 2016 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Theoretical Computer Science
- Signal Processing
- Information Systems
- Modeling and Simulation
- Hardware and Architecture
Keywords
- ADMM
- Bounded uncertainty
- Decision-feedback equalization
- Linear precoding
- Multi-cell MIMO
- Robust optimization
- Sum-rate maximization