TY - JOUR
T1 - Role of side-chain interactions on the formation of α -helices in model peptides
AU - Mahmoudinobar, Farbod
AU - Dias, Cristiano L.
AU - Zangi, Ronen
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/3/25
Y1 - 2015/3/25
N2 - The role played by side-chain interactions on the formation of α-helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α-helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α-helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i-i+3 and other nearest neighbors in the α-helix. In particular, the set of Lennard-Jones parameters that promote α-helices is characterized by PMF that exhibit a global minimum at distances corresponding to i-i+3 neighbors in α-helices. Implications of these results are discussed.
AB - The role played by side-chain interactions on the formation of α-helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α-helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α-helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i-i+3 and other nearest neighbors in the α-helix. In particular, the set of Lennard-Jones parameters that promote α-helices is characterized by PMF that exhibit a global minimum at distances corresponding to i-i+3 neighbors in α-helices. Implications of these results are discussed.
UR - http://www.scopus.com/inward/record.url?scp=84926058203&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926058203&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.91.032710
DO - 10.1103/PhysRevE.91.032710
M3 - Article
C2 - 25871147
AN - SCOPUS:84926058203
SN - 1539-3755
VL - 91
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 3
M1 - 032710
ER -