RoNet: Toward Robust Neural Assisted Mobile Network Configuration

Yuru Zhang, Yongjie Xue, Qiang Liu, Nakjung Choi, Tao Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Automating configuration is the key path to achieving zero-touch network management in ever-complicating mobile networks. Deep learning techniques show great potential to automatically learn and tackle high-dimensional networking problems. The vulnerability of deep learning to deviated input space, however, raises increasing deployment concerns under unpredictable variabilities and simulation-to-reality discrepancy in real-world networks. In this paper, we propose a novel RoNet framework to improve the robustness of neural-assisted configuration policies. We formulate the network configuration problem to maximize performance efficiency when serving diverse user applications. We design three integrated stages with novel normal training, learn-to-attack, and robust defense method for balancing the robustness and performance of policies. We evaluate RoNet via the NS-3 simulator extensively and the simulation results show that RoNet outperforms existing solutions in terms of robustness, adaptability, and scalability.

Original languageEnglish (US)
Title of host publicationICC 2023 - IEEE International Conference on Communications
Subtitle of host publicationSustainable Communications for Renaissance
EditorsMichele Zorzi, Meixia Tao, Walid Saad
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781538674628
StatePublished - 2023
Event2023 IEEE International Conference on Communications, ICC 2023 - Rome, Italy
Duration: May 28 2023Jun 1 2023

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607


Conference2023 IEEE International Conference on Communications, ICC 2023

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering


  • Machine Learning
  • Network Configuration
  • Policy Robustness


Dive into the research topics of 'RoNet: Toward Robust Neural Assisted Mobile Network Configuration'. Together they form a unique fingerprint.

Cite this