Abstract
Combined input-crosspoint buffered switches relax arbitration timing and provide high-performance switching for packet switches with high-speed ports. It has been shown that these switches, with one-cell crosspoint buffer and round-robin arbitration at input and output ports, provide 100% throughput under uniform traffic. However, under admissible traffic patterns with nonuniform distributions, only weight-based selection schemes are reported to provide high throughput. This paper proposes a round-robin based arbitration scheme for a combined input-crosspoint buffered packet switch. The presented scheme uses adaptable-size frames, where the frame size is determined by the received service. The resulting switch provides nearly 100% throughput for several admissible traffic patterns, including uniform and unbalanced traffic, using one-cell crosspoint buffers.
Original language | English (US) |
---|---|
Pages (from-to) | 1113-1117 |
Number of pages | 5 |
Journal | IEEE International Conference on Communications |
Volume | 2 |
DOIs | |
State | Published - 2004 |
Event | 2004 IEEE International Conference on Communications - Paris, France Duration: Jun 20 2004 → Jun 24 2004 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Electrical and Electronic Engineering
Keywords
- Adaptable-size frame
- Credit-based flow control
- Crosspoint-buffered switch
- Packet scheduling arbitration
- Virtual output queue