Scheduling Dual-Objective Stochastic Hybrid Flow Shop with Deteriorating Jobs via Bi-Population Evolutionary Algorithm

Yaping Fu, Mengchu Zhou, Xiwang Guo, Liang Qi

Research output: Contribution to journalArticlepeer-review

131 Scopus citations


Hybrid flow shop scheduling problems have gained an increasing attention in recent years because of its wide applications in real-world production systems. Most of the prior studies assume that the processing time of jobs is deterministic and constant. In practice, jobs' processing time is usually difficult to be exactly known in advance and can be influenced by many factors, e.g., machines' abrasion and jobs' feature, thereby leading to their uncertain and variable processing time. In this paper, a dual-objective stochastic hybrid flow shop deteriorating scheduling problem is presented with the goal to minimize makespan and total tardiness. In the formulated problem, the normal processing time of jobs follows a known stochastic distribution, and their actual processing time is a linear function of their start time. In order to solve it effectively, this paper develops a hybrid multiobjective optimization algorithm that maintains two populations executing the global search in the whole solution space and the local search in promising regions, respectively. An information sharing mechanism and resource allocating method are designed to enhance its exploration and exploitation ability. The simulation experiments are carried out on a set of instances, and several classical algorithms are chosen as its peers for comparison. The results demonstrate that the proposed algorithm has a great advantage in dealing with the investigated problem.

Original languageEnglish (US)
Article number8692751
Pages (from-to)5037-5048
Number of pages12
JournalIEEE Transactions on Systems, Man, and Cybernetics: Systems
Issue number12
StatePublished - Dec 2020

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Human-Computer Interaction
  • Computer Science Applications
  • Electrical and Electronic Engineering


  • Deteriorating scheduling
  • dual-objective hybrid flow shop
  • hybrid multiobjective evolutionary algorithm (HMOEA)
  • stochastic scheduling


Dive into the research topics of 'Scheduling Dual-Objective Stochastic Hybrid Flow Shop with Deteriorating Jobs via Bi-Population Evolutionary Algorithm'. Together they form a unique fingerprint.

Cite this