TY - JOUR
T1 - Scheduling imprecise computation tasks on uniform processors
AU - Wan, Guohua
AU - Leung, Joseph Y.T.
AU - Pinedo, Michael L.
N1 - Funding Information:
The work of the first author is supported in part by the NSF of China (70372058) and NSF of Guangdong (031808). The work of the second author is supported in part by the NSF Grant DMI-0300156. The work of the third author is supported in part by the NSF Grant DMI-0245603.
PY - 2007/10/16
Y1 - 2007/10/16
N2 - We consider the problem of preemptively scheduling n imprecise computation tasks on m ≥ 1 uniform processors, with each task Ti having two weights wi and wi′. Three objectives are considered: (1) minimizing the maximum w′-weighted error; (2) minimizing the total w-weighted error subject to the constraint that the maximum w′-weighted error is minimized; (3) minimizing the maximum w′-weighted error subject to the constraint that the total w-weighted error is minimized. For these objectives, we give polynomial time algorithms with time complexity O (m n4), O (m n4) and O (k m n4), respectively, where k is the number of distinct w-weights. We also present alternative algorithms for the three objectives, with time complexity O (c m n3), O (c m n3 + m n4) and O (k c m n3), respectively, where c is a parameter-dependent number.
AB - We consider the problem of preemptively scheduling n imprecise computation tasks on m ≥ 1 uniform processors, with each task Ti having two weights wi and wi′. Three objectives are considered: (1) minimizing the maximum w′-weighted error; (2) minimizing the total w-weighted error subject to the constraint that the maximum w′-weighted error is minimized; (3) minimizing the maximum w′-weighted error subject to the constraint that the total w-weighted error is minimized. For these objectives, we give polynomial time algorithms with time complexity O (m n4), O (m n4) and O (k m n4), respectively, where k is the number of distinct w-weights. We also present alternative algorithms for the three objectives, with time complexity O (c m n3), O (c m n3 + m n4) and O (k c m n3), respectively, where c is a parameter-dependent number.
KW - Algorithms
KW - Analysis of algorithms
KW - Combinatorial problems
KW - Imprecise computation task
KW - Polynomial time algorithms
KW - Preemptive scheduling
KW - Uniform processors
UR - http://www.scopus.com/inward/record.url?scp=34447642847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447642847&partnerID=8YFLogxK
U2 - 10.1016/j.ipl.2007.05.004
DO - 10.1016/j.ipl.2007.05.004
M3 - Article
AN - SCOPUS:34447642847
SN - 0020-0190
VL - 104
SP - 45
EP - 52
JO - Information Processing Letters
JF - Information Processing Letters
IS - 2
ER -