Self-assembly of monolayers of micron sized particles on thin liquid films

M. Hossain, K. Shah, D. Ju, S. K. Gurupatham, N. Musunuri, Ian Fischer, Pushpendra Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have recently shown that the capillarity-based process for self-assembling particle monolayers on fluid-liquid interfaces can be improved by applying an electric field in the direction normal to the interface. In this paper, we present a technique for freezing monolayers of micron-sized particles onto the surface of a flexible thin film. Micron sized particles do not self-assemble under the action of lateral capillary forces alone since capillary forces among them are small compared to Brownian forces. The technique involves assembling the monolayer on the interface between a UV-curable resin and a fluid which can be air or another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.

Original languageEnglish (US)
Title of host publicationASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013
DOIs
StatePublished - Dec 1 2013
EventASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013 - Incline Village, NV, United States
Duration: Jul 7 2013Jul 11 2013

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1 C
ISSN (Print)0888-8116

Other

OtherASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013
CountryUnited States
CityIncline Village, NV
Period7/7/137/11/13

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Self-assembly of monolayers of micron sized particles on thin liquid films'. Together they form a unique fingerprint.

Cite this