Self-assembly of monolayers of mixtures of particles

Edison C. Amah, Naga Musunuri, Ian S. Fischer, Pushpendra Singh, Md Shahadat Hossain

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have numerically studied the self-assembly process of particle mixtures on fluid-liquid interfaces when an electric field is applied in the direction normal to the interface. The electric and capillary forces on the particles causes them to self-assemble into molecular-like hierarchical arrangements consisting of composite particles arranged in a pattern. As in experiments, the structure of a composite particle depends on factors such as the relative sizes of the particles and their polarizibilities, and the electric field intensity. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles forming a ring around it. The number of particles in the ring and the spacing between the composite particles depends on their relative polarizibilities, the size of the smaller particles and the electric field intensity. Approximately same sized particles, on the other hand, form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate.

Original languageEnglish (US)
Title of host publicationASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850343
DOIs
StatePublished - 2016
EventASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting - Washington, United States
Duration: Jul 10 2016Jul 14 2016

Publication series

NameASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting

Other

OtherASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
CountryUnited States
CityWashington
Period7/10/167/14/16

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes
  • Process Chemistry and Technology
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Self-assembly of monolayers of mixtures of particles'. Together they form a unique fingerprint.

Cite this