TY - GEN
T1 - Self-assembly of monolayers of submicron sized particles on thin liquid films
AU - Pillapakkam, Shriram
AU - Musunuri, N. A.
AU - Singh, P.
PY - 2013
Y1 - 2013
N2 - In this paper, we present a technique for freezing monolayers of micron and sub-micron sized particles onto the surface of a flexible thin film after the self-assembly of a particle monolayer on fluid-liquid interfaces has been improved by the process we have developed where an electric field is applied in the direction normal to the interface. Particles smaller than about 10 microns do not self-assemble under the action of lateral capillary forces alone since capillary forces amongst them are small compared to Brownian forces. We have overcome this problem by applying an electric field in the direction normal to the interface which gives rise to dipoledipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another liquid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.
AB - In this paper, we present a technique for freezing monolayers of micron and sub-micron sized particles onto the surface of a flexible thin film after the self-assembly of a particle monolayer on fluid-liquid interfaces has been improved by the process we have developed where an electric field is applied in the direction normal to the interface. Particles smaller than about 10 microns do not self-assemble under the action of lateral capillary forces alone since capillary forces amongst them are small compared to Brownian forces. We have overcome this problem by applying an electric field in the direction normal to the interface which gives rise to dipoledipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another liquid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.
UR - http://www.scopus.com/inward/record.url?scp=84903453018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903453018&partnerID=8YFLogxK
U2 - 10.1115/IMECE2013-65324
DO - 10.1115/IMECE2013-65324
M3 - Conference contribution
AN - SCOPUS:84903453018
SN - 9780791856314
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Fluids Engineering Systems and Technologies
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Y2 - 15 November 2013 through 21 November 2013
ER -