Self-assembly of monolayers of submicron sized particles on thin liquid films

Shriram Pillapakkam, N. A. Musunuri, P. Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we present a technique for freezing monolayers of micron and sub-micron sized particles onto the surface of a flexible thin film after the self-assembly of a particle monolayer on fluid-liquid interfaces has been improved by the process we have developed where an electric field is applied in the direction normal to the interface. Particles smaller than about 10 microns do not self-assemble under the action of lateral capillary forces alone since capillary forces amongst them are small compared to Brownian forces. We have overcome this problem by applying an electric field in the direction normal to the interface which gives rise to dipoledipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another liquid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.

Original languageEnglish (US)
Title of host publicationFluids Engineering Systems and Technologies
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856314
DOIs
StatePublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume7 A

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
CountryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Self-assembly of monolayers of submicron sized particles on thin liquid films'. Together they form a unique fingerprint.

Cite this