Abstract
Natural rubber (NR) and poly(styrene-co-butadiene) rubber (SBR) has been crosslinked with sulfur and accelerator with three different doses of varied accelerator to sulfur ratios to obtain three crosslinked membranes from each of these two rubbers (NR-1, NR-2 and NR-3 and SBR-1, SBR-2 and SBR-3). These six rubber membranes were used for pervaporative separation of toluene-methanol mixture up to 10 wt% of toluene in feed. It has been found that with increase in accelerator to sulfur ratio from membrane-3 to membrane-1, the vulcanization system shifts from conventional to efficient system resulting in higher degree of crosslink density and permeation selectivity. All of these membranes showed reasonably good range of flux (45.26 gm/m2 h for NR-3 to 12.0 gm/m2 h for SBR-1) and separation factor (162 for SBR-1 to 35.12 for NR-3) for 0.55 wt% of toluene in feed. Among these membranes NR-1 and SBR-1 with highest crosslink density showed maximum separation factor for toluene along with good flux. It has also been found that for comparable crosslink density SBR membranes showed better separation factor than NR membranes.
Original language | English (US) |
---|---|
Pages (from-to) | 132-145 |
Number of pages | 14 |
Journal | Journal of Membrane Science |
Volume | 270 |
Issue number | 1-2 |
DOIs | |
State | Published - Feb 15 2006 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biochemistry
- General Materials Science
- Physical and Theoretical Chemistry
- Filtration and Separation
Keywords
- Crosslink density
- Pervaporation
- Rubber membranes
- Separation factor
- Vulcanization system