SGKD: A Scalable and Effective Knowledge Distillation Framework for Graph Representation Learning

Yufei He, Yao Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As Graph Neural Networks (GNNs) are widely used in various fields, there is a growing demand for improving their efficiency and scalablity. Knowledge Distillation (KD), a classical methods for model compression and acceleration, has been gradually introduced into the field of graph learning. More recently, it has been shown that, through knowledge distillation, the predictive capability of a well-trained GNN model can be transferred to lightweight and easy-to-deploy MLP models. Such distilled MLPs are able to achieve comparable performance as their corresponding G NN teachers while being significantly more efficient in terms of both space and time. However, the research of KD for graph learning is still in its early stage and there exist several limitations in the existing KD framework. The major issues lie in distilled MLPs lack useful information about the graph structure and logits of teacher are not always reliable. In this paper, we propose a Scalable and effective graph neural network Knowledge Distillation framework (SGKD) to address these issues. Specifically, to include the graph, we use feature propagation as preprocessing to provide MLPs with graph structure-aware features in the original feature space; to address unreliable logits of teacher, we introduce simple yet effective training strategies such as masking and temperature. With these innovations, our framework is able to be more effective while remaining scalable and efficient in training and inference. We conducted comprehensive experiments on eight datasets of different sizes - up to 100 million nodes - under various settings. The results demonstrated that SG KD is able to significantly outperform existing KD methods and even achieve comparable performance with their state-of-the-art GNN teachers.

Original languageEnglish (US)
Title of host publicationProceedings - 22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
EditorsK. Selcuk Candan, Thang N. Dinh, My T. Thai, Takashi Washio
PublisherIEEE Computer Society
Pages666-673
Number of pages8
ISBN (Electronic)9798350346091
DOIs
StatePublished - 2022
Event22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022 - Orlando, United States
Duration: Nov 28 2022Dec 1 2022

Publication series

NameIEEE International Conference on Data Mining Workshops, ICDMW
Volume2022-November
ISSN (Print)2375-9232
ISSN (Electronic)2375-9259

Conference

Conference22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
Country/TerritoryUnited States
CityOrlando
Period11/28/2212/1/22

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Software

Keywords

  • efficient training and inference
  • graph neural networks
  • knowledge distillation

Fingerprint

Dive into the research topics of 'SGKD: A Scalable and Effective Knowledge Distillation Framework for Graph Representation Learning'. Together they form a unique fingerprint.

Cite this