Signed Graph Convolutional Networks

Tyler Derr, Yao Ma, Jiliang Tang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

209 Scopus citations

Abstract

Due to the fact much of today's data can be represented as graphs, there has been a demand for generalizing neural network models for graph data. One recent direction that has shown fruitful results, and therefore growing interest, is the usage of graph convolutional neural networks (GCNs). They have been shown to provide a significant improvement on a wide range of tasks in network analysis, one of which being node representation learning. The task of learning low-dimensional node representations has shown to increase performance on a plethora of other tasks from link prediction and node classification, to community detection and visualization. Simultaneously, signed networks (or graphs having both positive and negative links) have become ubiquitous with the growing popularity of social media. However, since previous GCN models have primarily focused on unsigned networks (or graphs consisting of only positive links), it is unclear how they could be applied to signed networks due to the challenges presented by negative links. The primary challenges are based on negative links having not only a different semantic meaning as compared to positive links, but their principles are inherently different and they form complex relations with positive links. Therefore we propose a dedicated and principled effort that utilizes balance theory to correctly aggregate and propagate the information across layers of a signed GCN model. We perform empirical experiments comparing our proposed signed GCN against state-of-the-art baselines for learning node representations in signed networks. More specifically, our experiments are performed on four real-world datasets for the classical link sign prediction problem that is commonly used as the benchmark for signed network embeddings algorithms.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Data Mining, ICDM 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages929-934
Number of pages6
ISBN (Electronic)9781538691588
DOIs
StatePublished - Dec 27 2018
Externally publishedYes
Event18th IEEE International Conference on Data Mining, ICDM 2018 - Singapore, Singapore
Duration: Nov 17 2018Nov 20 2018

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2018-November
ISSN (Print)1550-4786

Conference

Conference18th IEEE International Conference on Data Mining, ICDM 2018
Country/TerritorySingapore
CitySingapore
Period11/17/1811/20/18

All Science Journal Classification (ASJC) codes

  • General Engineering

Keywords

  • Balance theory
  • Graph convolutional networks
  • Network embedding
  • Signed networks

Fingerprint

Dive into the research topics of 'Signed Graph Convolutional Networks'. Together they form a unique fingerprint.

Cite this