Abstract
We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem in which both matrices are graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least for the case of 2-way partitioning. In practice this translates to a very fast implementation that consistently outperforms existing spectral approaches both in speed and quality.
Original language | English (US) |
---|---|
Pages | 445-454 |
Number of pages | 10 |
State | Published - Jan 1 2016 |
Event | 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 - Cadiz, Spain Duration: May 9 2016 → May 11 2016 |
Conference
Conference | 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 |
---|---|
Country/Territory | Spain |
City | Cadiz |
Period | 5/9/16 → 5/11/16 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Statistics and Probability