Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

T. Kuhn, M. E. Earle, A. F. Khalizov, J. J. Sloan

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 Î1/4m. Temperature-and size-dependent values of volume-and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 Î1/4m. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

Original languageEnglish (US)
Pages (from-to)2853-2861
Number of pages9
JournalAtmospheric Chemistry and Physics
Volume11
Issue number6
DOIs
StatePublished - 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets'. Together they form a unique fingerprint.

Cite this