TY - JOUR
T1 - Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis
AU - Khader, Ateka
AU - Sherman, Lauren S.
AU - Rameshwar, Pranela
AU - Arinzeh, Treena L.
N1 - Publisher Copyright:
© 2016 Mary Ann Liebert, Inc.
PY - 2016/12/15
Y1 - 2016/12/15
N2 - Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na2WO4), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na2WO4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na2WO4 compared to control, without Na2WO4. In the induction medium containing insulin, cells in 0.01 mM Na2WO4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na2WO4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na2WO4 also expressed chondrogenic markers. Na2WO4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na2WO4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.
AB - Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na2WO4), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na2WO4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na2WO4 compared to control, without Na2WO4. In the induction medium containing insulin, cells in 0.01 mM Na2WO4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na2WO4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na2WO4 also expressed chondrogenic markers. Na2WO4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na2WO4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.
KW - Chondrogenesis
KW - human mesenchymal stem cells
KW - insulin mimetic
KW - sodium tungstate
UR - http://www.scopus.com/inward/record.url?scp=85003946092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85003946092&partnerID=8YFLogxK
U2 - 10.1089/scd.2016.0158
DO - 10.1089/scd.2016.0158
M3 - Article
C2 - 27615276
AN - SCOPUS:85003946092
SN - 1547-3287
VL - 25
SP - 1909
EP - 1918
JO - Stem Cells and Development
JF - Stem Cells and Development
IS - 24
ER -