Abstract
We consider the existence of spatially localized traveling wave solutions of the mass-in-mass lattice. Under an anti-resonance condition first discovered by Kevrekidis, Stefanov and Xu, we prove that such solutions exist in two distinguished limits; the first where the mass of the internal resonator is small and the second where the internal spring is very stiff. We then numerically simulate the solutions, and these simulations indicate that the anti-resonant traveling waves are very weakly unstable.
Original language | English (US) |
---|---|
Article number | 197 |
Journal | Zeitschrift fur Angewandte Mathematik und Physik |
Volume | 71 |
Issue number | 6 |
DOIs | |
State | Published - Dec 1 2020 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- General Physics and Astronomy
- Applied Mathematics
Keywords
- Fermi Pasta Ulam Tsingou Lattice
- Lattice differential equations
- Mass-in-mass lattices
- Solitary waves