Abstract
We investigated solvent induced transition of surface instability from wrinkles to creases in poly(2-hydroxyethyl methacrylate) (PHEMA) gels with depth-wise crosslinking gradients. The mode of surface instability and morphology of surface patterns was found to be dependent on the equilibrium linear expansion, which was a function of crosslinker concentration and the solvent-polymer interaction. The maximum linear expansion was obtained when the PHEMA film was swollen in a good solvent, which had the Hildebrand solubility parameter (δs) close to that of PHEMA gels, 26.6 to 29.6 MPa1/2. In a relatively poor solvent (e.g. water), wrinkling patterns were obtained and the morphoplogy was determined by the concentration of the crosslinker, ethylene glycol dimethacrylate (EGDMA). In a good solvent, such as alcohol and alcohol/water mixture, the equilibrium linear expansion ratio increased significantly, leading to the transition from wrinkling to creasing instability. In an ethanol/water mixture, we systematically varied the ratio between ethanol and water and observed the transition from wrinkling to creasing when gradually adding ethanol to water, and the reverse transition when adding water in ethanol. The onset of the linear expansion ratio for creasing (αc,c) was again found dependent on EGDMA concentration: αc,c ≈ 2.00 and 1.3, respectively, for gels with 1 and 3 wt% EGDMA. Finally, we demonstrated confinement of the creases by combining swelling and photopatterning.
Original language | English (US) |
---|---|
Pages (from-to) | 5795-5801 |
Number of pages | 7 |
Journal | Soft Matter |
Volume | 6 |
Issue number | 22 |
DOIs | |
State | Published - Nov 21 2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Condensed Matter Physics