Some new results on Yang-Lee zeros of the Ising model partition function

Victor Matveev, Robert Shrock

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


We prove that for the Ising model on a lattice of dimensionality d ≥ 2, the zeros of the partition function Z in the complex μ plane (where μ = e-2βH) lie on the unit circle |μ| = 1 for a wider range of Knn′ = βJnn′ than the range Knn′ ≥ 0 assumed in the premise of the Yang-Lee circle theorem. This range includes complex temperatures, and we show that it is lattice-dependent. Our results thus complement the Yang-Lee theorem, which applies for any d and any lattice if Jnn′ ≥ 0. For the case of uniform couplings Knn′ = K, we show that these zeros lie on the unit circle |μ| = 1 not just for the Yang-Lee range 0 ≤ u ≤1, but also for (i) -uc,sq ≤ u ≤ 0 on the square lattice, and (ii) -uc,t ≤ u ≤ 0 on the triangular lattice, where u = z2 = e-4K, uc,sq = 3 - 23/2, and uc,t = 1/3. For the honeycomb, 3 × 122, and 4 × 82 lattices we prove an exact symmetry of the reduced partition functions, Zr(z, -μ) = Zr(-z,μ). This proves that the zeros of Z for these lattices lie on |μ| = 1 for -1 ≤ z ≤ 0 as well as the Yang-Lee range 0 ≤ z ≤ 1. Finally, we report some new results on the patterns of zeros for values of u or z outside these ranges.

Original languageEnglish (US)
Pages (from-to)271-279
Number of pages9
JournalPhysics Letters, Section A: General, Atomic and Solid State Physics
Issue number5-6
StatePublished - Jun 10 1996
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'Some new results on Yang-Lee zeros of the Ising model partition function'. Together they form a unique fingerprint.

Cite this