Space-time processing for increased capacity of wireless CDMA

X. Bernstein, A. M. Haimovich

Research output: Contribution to conferencePaperpeer-review

23 Scopus citations

Abstract

Spatial and temporal processing are combined to increase the capacity of CDMA-based wireless communications systems. Degrees of freedom provided by space-time processing are exploited to combat both fading and co-channel interference (the near-far effect). The following methods are formulated and studied: (1) space-time diversity, (2) cascade optimum spatial - diversity (RAKE) temporal, (3) cascade optimum spatial - optimum temporal, and (4) joint domain optimum processing. It is shown that, due to its interference cancellation capability, optimum combining provides significantly better performance than diversity processing. In particular, in a typical CDMA scenario with two antennas, the joint domain optimum combining system provides at least a 30% increase in capacity over diversity processing. Optimum combining may also be applied to compensate for imperfect power control of the signals received at the base station.

Original languageEnglish (US)
Pages597-601
Number of pages5
StatePublished - 1996
EventProceedings of the 1996 IEEE International Conference on Communications, ICC'96. Part 1 (of 3) - Dallas, TX, USA
Duration: Jun 23 1996Jun 27 1996

Other

OtherProceedings of the 1996 IEEE International Conference on Communications, ICC'96. Part 1 (of 3)
CityDallas, TX, USA
Period6/23/966/27/96

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Space-time processing for increased capacity of wireless CDMA'. Together they form a unique fingerprint.

Cite this