TY - GEN
T1 - Sparse representation based complete kernel marginal fisher analysis framework for computational art painting categorization
AU - Puthenputhussery, Ajit
AU - Liu, Qingfeng
AU - Liu, Chengjun
N1 - Publisher Copyright:
© Springer International Publishing AG 2016.
PY - 2016
Y1 - 2016
N2 - This paper presents a sparse representation based complete kernel marginal Fisher analysis (SCMFA) framework for categorizing fine art images. First, we introduce several Fisher vector based features for feature extraction so as to extract and encode important discriminatory information of the painting image. Second, we propose a complete marginal Fisher analysis method so as to extract two kinds of discriminant information, regular and irregular. In particular, the regular discriminant features are extracted from the range space of the intraclass compactness using the marginal Fisher discriminant criterion whereas the irregular discriminant features are extracted from the null space of the intraclass compactness using the marginal interclass separability criterion. The motivation for extracting two kinds of discriminant information is that the traditional MFA method uses a PCA projection in the initial step that may discard the null space of the intraclass compactness which may contain useful discriminatory information. Finally, we learn a discriminative sparse representation model with the objective to integrate the representation criterion with the discriminant criterion in order to enhance the discriminative ability of the proposed method. The effectiveness of the proposed SCMFA method is assessed on the challenging Painting-91 dataset. Experimental results show that our proposed method is able to (i) achieve the state-of-the-art performance for painting artist and style classification, (ii) outperform other popular image descriptors and deep learning methods, (iii) improve upon the traditional MFA method as well as (iv) discover the artist and style influence to understand their connections in different art movement periods.
AB - This paper presents a sparse representation based complete kernel marginal Fisher analysis (SCMFA) framework for categorizing fine art images. First, we introduce several Fisher vector based features for feature extraction so as to extract and encode important discriminatory information of the painting image. Second, we propose a complete marginal Fisher analysis method so as to extract two kinds of discriminant information, regular and irregular. In particular, the regular discriminant features are extracted from the range space of the intraclass compactness using the marginal Fisher discriminant criterion whereas the irregular discriminant features are extracted from the null space of the intraclass compactness using the marginal interclass separability criterion. The motivation for extracting two kinds of discriminant information is that the traditional MFA method uses a PCA projection in the initial step that may discard the null space of the intraclass compactness which may contain useful discriminatory information. Finally, we learn a discriminative sparse representation model with the objective to integrate the representation criterion with the discriminant criterion in order to enhance the discriminative ability of the proposed method. The effectiveness of the proposed SCMFA method is assessed on the challenging Painting-91 dataset. Experimental results show that our proposed method is able to (i) achieve the state-of-the-art performance for painting artist and style classification, (ii) outperform other popular image descriptors and deep learning methods, (iii) improve upon the traditional MFA method as well as (iv) discover the artist and style influence to understand their connections in different art movement periods.
UR - http://www.scopus.com/inward/record.url?scp=84990052430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84990052430&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-46484-8_37
DO - 10.1007/978-3-319-46484-8_37
M3 - Conference contribution
AN - SCOPUS:84990052430
SN - 9783319464831
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 612
EP - 627
BT - Computer Vision - 14th European Conference, ECCV 2016, Proceedings
A2 - Leibe, Bastian
A2 - Matas, Jiri
A2 - Sebe, Nicu
A2 - Welling, Max
PB - Springer Verlag
T2 - 14th European Conference on Computer Vision, ECCV 2016
Y2 - 8 October 2016 through 16 October 2016
ER -