Abstract
Nanoscale BaTiO3 particles (≈10 nm) prepared by ball-milling a mixture of oleic acid and heptane have been reported to have an electric polarization several times larger than that for bulk BaTiO3. In this work, detailed local, intermediate, and long-range structural studies are combined with spectroscopic measurements to develop a model structure of these materials. The x-ray spectroscopic measurements reveal large Ti off-centering as the key factor producing the large spontaneous polarization in the nanoparticles. Temperature-dependent lattice parameter changes manifest sharpening of the structural phase transitions in these BaTiO3 nanoparticles compared to the pure nanoparticle systems. Sharp crystalline-type peaks in the barium oleate Raman spectra suggest that this component in the composite core-shell matrix, a product of mechanochemical synthesis, stabilizes an enhanced polar structural phase of the BaTiO3 core nanoparticles.
Original language | English (US) |
---|---|
Article number | 064106 |
Journal | Physical Review B |
Volume | 108 |
Issue number | 6 |
DOIs | |
State | Published - Aug 1 2023 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics