Suppression of Rayleigh-Taylor instability using electric fields

Lyudmyla L. Barannyk, Demetrios T. Papageorgiou, Peter G. Petropoulos

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

This study considers the stability of two stratified immiscible incompressible fluids in a horizontal channel of infinite extent. Of particular interest is the case with the heavier fluid initially lying above the lighter fluid, so that the system is susceptible to the classical Rayleigh-Taylor instability. An electric field acting in the horizontal direction is imposed on the system and it is shown that it can act to completely suppress Rayleigh-Taylor instabilities and produces a dispersive regularization in the model. Dispersion relations are derived and a class of nonlinear traveling waves (periodic and solitary) is computed. Numerical solutions of the initial value problem of the system of model evolution equations that demonstrate a stabilization of Rayleigh-Taylor instability due to the electric field are presented.

Original languageEnglish (US)
Pages (from-to)1008-1016
Number of pages9
JournalMathematics and Computers in Simulation
Volume82
Issue number6
DOIs
StatePublished - Feb 2012

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science
  • Numerical Analysis
  • Modeling and Simulation
  • Applied Mathematics

Keywords

  • Electric fields
  • Rayleigh-Taylor instability
  • Solitary waves
  • Traveling waves

Fingerprint

Dive into the research topics of 'Suppression of Rayleigh-Taylor instability using electric fields'. Together they form a unique fingerprint.

Cite this