Synergistic Role of Oxidative Stress and Blood-Brain Barrier Permeability as Injury Mechanisms in the Acute Pathophysiology of Blast-induced Neurotrauma

Matthew Kuriakose, Daniel Younger, Arun Reddy Ravula, Eren Alay, Kakulavarapu V. Rama Rao, Namas Chandra

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


Blast-induced traumatic brain injury (bTBI) has been recognized as the common mode of neurotrauma amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from our laboratory have identified enhanced blood-brain barrier (BBB) permeability as a significant, sub-acute (four hours post-blast) pathological change in bTBI. We also found that NADPH oxidase (NOX)-mediated oxidative stress occurs at the same time post-blast when the BBB permeability changes. We therefore hypothesized that oxidative stress is a major causative factor in the BBB breakdown in the sub-acute stages. This work therefore examined the role of NOX1 and its downstream effects on BBB permeability in the frontal cortex (a region previously shown to be the most vulnerable) immediately and four hours post-blast exposure. Rats were injured by primary blast waves in a compressed gas-driven shock tube at 180 kPa and the BBB integrity was assessed by extravasation of Evans blue and changes in tight junction proteins (TJPs) as well as translocation of macromolecules from blood to brain and vice versa. NOX1 abundance was also assessed in neurovascular endothelial cells. Blast injury resulted in increased extravasation and reduced levels of TJPs in tissues consistent with our previous observations. NOX1 levels were significantly increased in endothelial cells followed by increased superoxide production within 4 hours of blast. Blast injury also increased the levels/activation of matrix metalloproteinase 3 and 9. To test the role of oxidative stress, rats were administered apocynin, which is known to inhibit the assembly of NOX subunits and arrests its function. We found apocynin completely inhibited dye extravasation as well as restored TJP levels to that of controls and reduced matrix metalloproteinase activation in the sub-acute stages following blast. Together these data strongly suggest that NOX-mediated oxidative stress contributes to enhanced BBB permeability in bTBI through a pathway involving increased matrix metalloproteinase activation.

Original languageEnglish (US)
Article number7717
JournalScientific reports
Issue number1
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Synergistic Role of Oxidative Stress and Blood-Brain Barrier Permeability as Injury Mechanisms in the Acute Pathophysiology of Blast-induced Neurotrauma'. Together they form a unique fingerprint.

Cite this