TY - GEN
T1 - Synthesis and characterization of aluminum-rich nanocomposite powders at cryogenic temperatures
AU - Badiola, Carlo
AU - Schoenitz, Mirko
AU - Zhu, Xiaoying
AU - Dreizin, Edward L.
PY - 2008
Y1 - 2008
N2 - Nanocomposite materials with reactive components are of interest for many applications in pyrotechnics, explosives, and propellants. Several such materials have been recently prepared by Arrested Reactive Milling (ARM), a method based on mechanical milling of μm-sized component powders to form μm-sized composite particles in which the components are mixed on a scale of 100 nm or finer. The temperature at which the milling is performed affects significantly both the rate at which the material is refined and the final properties of the product. In the present paper we report on an effort prepare Al-CuO and Al-MoO3 reactive nanocomposites at cryogenic temperatures. A SPEX Certiprep 6815 Freezer/Mill was used to prepare the nanocomposites with aluminum-rich compositions from μm-sized component powders. The material was processed in steel vials using steel balls of different sizes as milling medium. The number and dimensions of the milling balls as well as the milling time were systematically varied. The prepared powders were characterized by X-ray diffraction, particle size analysis, and scanning electron microscopy. Thermal characteristics were studied using a custom wire-ignition setup and differential scanning calorimetry. Preliminary results show that the uniformity of mixing and reactivity of the nanocomposite powders can be substantially improved using milling at cryogenic temperatures.
AB - Nanocomposite materials with reactive components are of interest for many applications in pyrotechnics, explosives, and propellants. Several such materials have been recently prepared by Arrested Reactive Milling (ARM), a method based on mechanical milling of μm-sized component powders to form μm-sized composite particles in which the components are mixed on a scale of 100 nm or finer. The temperature at which the milling is performed affects significantly both the rate at which the material is refined and the final properties of the product. In the present paper we report on an effort prepare Al-CuO and Al-MoO3 reactive nanocomposites at cryogenic temperatures. A SPEX Certiprep 6815 Freezer/Mill was used to prepare the nanocomposites with aluminum-rich compositions from μm-sized component powders. The material was processed in steel vials using steel balls of different sizes as milling medium. The number and dimensions of the milling balls as well as the milling time were systematically varied. The prepared powders were characterized by X-ray diffraction, particle size analysis, and scanning electron microscopy. Thermal characteristics were studied using a custom wire-ignition setup and differential scanning calorimetry. Preliminary results show that the uniformity of mixing and reactivity of the nanocomposite powders can be substantially improved using milling at cryogenic temperatures.
UR - http://www.scopus.com/inward/record.url?scp=79952298943&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952298943&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:79952298943
SN - 9780816910502
T3 - AIChE Annual Meeting, Conference Proceedings
BT - AIChE100 - 2008 AIChE Annual Meeting, Conference Proceedings
T2 - 2008 AIChE Annual Meeting, AIChE 100
Y2 - 16 November 2008 through 21 November 2008
ER -