Synthesis and Stabilization of Cubic Gauche Polynitrogen under Radio-Frequency Plasma

Haizheng Zhuang, Safa Alzaim, Skywalker Li, El Mostafa Benchafia, Joshua Young, Nuggehalli M. Ravindra, Zafar Iqbal, Xianqin Wang

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Cubic gauche polynitrogen (cgPN) has been very attractive because of its high energy density that is 3.5 times of the TNT energy. cgPN has been investigated theoretically in detail, but few experimental studies have been reported. In 2004, cgPN was first synthesized from nitrogen gas under extremely high temperature and high pressure conditions and the trace amount of cgPN in the high-pressure vessel decomposed once the pressure was released. Until recently, our group for the first time synthesized cgPN from an NaN3 precursor under ambient conditions with radio-frequency plasma. Here, synthesis and stabilization of cgPN are systematically investigated both computationally and experimentally. The effects of several major factors are studied, and the possible key intermediate is explored. In addition to NaN3, a ZEZ N8 precursor is also used. ZEZ N8 was synthesized by the cyclic voltammetry method. EZE N8 is found to be the potential intermediate for cgPN formation based on the Fourier transform infrared and Raman spectra and the fact that a higher yield of cgPN is obtained with the ZEZ N8 precursor. Na+ is shown to stabilize cgPN under ambient conditions; however, an excess of Na+ has a negative effect on cgPN growth. The oxygen reduction reaction (ORR) was carried out using cgPN as the cathodic catalyst, and the result shows that it is very active for the ORR, which is comparable with a commercial Pt/carbon catalyst. Moreover, cgPN shows an excellent stability during the ORR. This work guides the rational synthesis and scaleup of cgPN and its practical applications for the ORR.

Original languageEnglish (US)
Pages (from-to)4712-4720
Number of pages9
JournalChemistry of Materials
Volume34
Issue number10
DOIs
StatePublished - May 24 2022

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Synthesis and Stabilization of Cubic Gauche Polynitrogen under Radio-Frequency Plasma'. Together they form a unique fingerprint.

Cite this