Temporal and spatial distribution of microplastics in green infrastructures: Rain gardens

Meghana Parameswarappa Jayalakshmamma, Viravid Na Nagara, Ashish Borgaonkar, Dibyendu Sarkar, Christopher Obropta, Michel Boufadel

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Rain gardens, a type of green infrastructure (GI), have been recognized for mitigating flooding and improving water quality from minor storms by trapping stormwater pollutants. Yet, the capability of these systems to retain microplastics (MPs) from stormwater, especially in size <125 μm, remains inadequately understood. This study investigated the spatial and temporal distributions of MPs in three rain gardens located in Newark, New Jersey, USA. The rain gardens have been in operation for ∼7 years and located in different land uses: low-density residential (Site 1), commercial (Site 2), and high-density residential (Site 3). The sediment samples were collected during May 2022, August 2022, and February 2023 at various soil depths and horizontal distances of rain gardens. The MPs were quantified and characterized using Fourier transform infrared (FTIR) spectrometer and a Raman microscope. The overall mean concentration varied between sampling sites, with 469 ± 89.8 pkg−1 in Site 1, 604 ± 91.4 pkg−1 in Site 2, and 997 ± 64.3 pkg−1 in Site 3, with Polypropylene as the dominant polymer, followed by nylon and polyethylene. In the vertical direction, larger MPs (250 μm–5 mm) were effectively retained within the top 5 cm and their concentration declined exponentially with the increasing depths. Small-sized MPs (1–250 μm) were prevalent at deeper depths (≥ 10 cm), and no MPs were found below 15 cm. In the horizontal direction, the highest MP concentration was observed near the stormwater inlet, and the concentration decreased away from the inlet. Over the nine-month period, a notable increase in concentration was observed at all sites. These findings contribute valuable knowledge towards developing effective measures for retaining MPs from stormwater and monitoring GIs in urban environments.

Original languageEnglish (US)
Article number142543
JournalChemosphere
Volume362
DOIs
StatePublished - Aug 2024

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Keywords

  • Accumulation
  • Bioretention
  • Microplastics
  • Rain gardens
  • Stormwater

Fingerprint

Dive into the research topics of 'Temporal and spatial distribution of microplastics in green infrastructures: Rain gardens'. Together they form a unique fingerprint.

Cite this