TY - JOUR
T1 - Temporally and spatially adaptive Doppler analysis for robust handheld optical coherence elastography
AU - Liu, Xuan
AU - Zaki, Farzana R.
AU - Wu, Haokun
AU - Wang, Chizhong
AU - Wang, Yahui
N1 - Publisher Copyright:
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Optical coherence elastography (OCE), a functional extension of optical coherence tomography (OCT), can be used to characterize the mechanical properties of biological tissue. A handheld fiber-optic OCE instrument will allow the clinician to conveniently interrogate the localized mechanical properties of in vivo tissue, leading to better informed clinical decision making. During handheld OCE characterization, the handheld probe is used to compress the sample and the displacement of the sample is quantified by analyzing the OCT signals acquired. However, the motion within the sample inevitably varies in time due to varying hand motion. Moreover, the motion speed depends on spatial location due to the sample deformation. Hence, there is a need for a robust motion tracking method for manual OCE measurement. In this study, we investigate a temporally and spatially adaptive Doppler analysis method. The method described here strategically chooses the time interval (δt) between signals involved in Doppler analysis to track the motion speed v(z,t) that varies temporally and spatially in a deformed sample volume under manual compression. Enabled by temporally and spatially adaptive Doppler analysis, we report the first demonstration of real-time manual OCE characterization of in vivo tissue to the best of our knowledge.
AB - Optical coherence elastography (OCE), a functional extension of optical coherence tomography (OCT), can be used to characterize the mechanical properties of biological tissue. A handheld fiber-optic OCE instrument will allow the clinician to conveniently interrogate the localized mechanical properties of in vivo tissue, leading to better informed clinical decision making. During handheld OCE characterization, the handheld probe is used to compress the sample and the displacement of the sample is quantified by analyzing the OCT signals acquired. However, the motion within the sample inevitably varies in time due to varying hand motion. Moreover, the motion speed depends on spatial location due to the sample deformation. Hence, there is a need for a robust motion tracking method for manual OCE measurement. In this study, we investigate a temporally and spatially adaptive Doppler analysis method. The method described here strategically chooses the time interval (δt) between signals involved in Doppler analysis to track the motion speed v(z,t) that varies temporally and spatially in a deformed sample volume under manual compression. Enabled by temporally and spatially adaptive Doppler analysis, we report the first demonstration of real-time manual OCE characterization of in vivo tissue to the best of our knowledge.
UR - http://www.scopus.com/inward/record.url?scp=85049373961&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049373961&partnerID=8YFLogxK
U2 - 10.1364/BOE.9.003335
DO - 10.1364/BOE.9.003335
M3 - Article
AN - SCOPUS:85049373961
SN - 2156-7085
VL - 9
SP - 3335
EP - 3353
JO - Biomedical Optics Express
JF - Biomedical Optics Express
IS - 7
M1 - #327142
ER -