TY - JOUR
T1 - The innervation of the pyloric region of the crab, Cancer borealis
T2 - Homologous muscles in decapod species are differently innervated
AU - Hooper, Scott L.
AU - O'Neil, Michael B.
AU - Wagner, Robert
AU - Ewer, John
AU - Golowasch, Jorge
AU - Marder, Eve
PY - 1986/3
Y1 - 1986/3
N2 - The muscles of the pyloric region of the stomach of the crab, Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster, Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons in P. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.
AB - The muscles of the pyloric region of the stomach of the crab, Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster, Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons in P. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0022763390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022763390&partnerID=8YFLogxK
U2 - 10.1007/BF00612305
DO - 10.1007/BF00612305
M3 - Article
C2 - 2876096
AN - SCOPUS:0022763390
SN - 0340-7594
VL - 159
SP - 227
EP - 240
JO - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
JF - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
IS - 2
ER -