TY - GEN
T1 - The preemptive resource allocation problem
AU - Sarpatwar, Kanthi
AU - Schieber, Baruch
AU - Shachnai, Hadas
N1 - Publisher Copyright:
© Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai; licensed under Creative Commons License CC-BY.
PY - 2019/12
Y1 - 2019/12
N2 - We revisit a classical scheduling model to incorporate modern trends in data center networks and cloud services. Addressing some key challenges in the allocation of shared resources to user requests (jobs) in such settings, we consider the following variants of the classic resource allocation problem (RAP). The input to our problems is a set J of jobs and a set M of homogeneous hosts, each has an available amount of some resource. A job is associated with a release time, a due date, a weight and a given length, as well as its resource requirement. A feasible schedule is an allocation of the resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource constraints. A crucial distinction between classic RAP and our problems is that we allow preemption and migration of jobs, motivated by virtualization techniques. We consider two natural objectives: throughput maximization (MaxT), which seeks a maximum weight subset of the jobs that can be feasibly scheduled on the hosts in M, and resource minimization (MinR), that is finding the minimum number of (homogeneous) hosts needed to feasibly schedule all jobs. Both problems are known to be NP-hard. We first present an Ω(1)-approximation algorithm for MaxT instances where time-windows form a laminar family of intervals. We then extend the algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for each job to be completed. For MinR we study a more general setting with d resources and derive an O(log d)-approximation for any fixed d ≥ 1, under the assumption that time-windows are not too small. This assumption can be removed leading to a slightly worse ratio of O(log dlog∗ T), where T is the maximum due date of any job.
AB - We revisit a classical scheduling model to incorporate modern trends in data center networks and cloud services. Addressing some key challenges in the allocation of shared resources to user requests (jobs) in such settings, we consider the following variants of the classic resource allocation problem (RAP). The input to our problems is a set J of jobs and a set M of homogeneous hosts, each has an available amount of some resource. A job is associated with a release time, a due date, a weight and a given length, as well as its resource requirement. A feasible schedule is an allocation of the resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource constraints. A crucial distinction between classic RAP and our problems is that we allow preemption and migration of jobs, motivated by virtualization techniques. We consider two natural objectives: throughput maximization (MaxT), which seeks a maximum weight subset of the jobs that can be feasibly scheduled on the hosts in M, and resource minimization (MinR), that is finding the minimum number of (homogeneous) hosts needed to feasibly schedule all jobs. Both problems are known to be NP-hard. We first present an Ω(1)-approximation algorithm for MaxT instances where time-windows form a laminar family of intervals. We then extend the algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for each job to be completed. For MinR we study a more general setting with d resources and derive an O(log d)-approximation for any fixed d ≥ 1, under the assumption that time-windows are not too small. This assumption can be removed leading to a slightly worse ratio of O(log dlog∗ T), where T is the maximum due date of any job.
KW - Approximation Algorithms
KW - Machine Scheduling
KW - Resource Allocation
KW - Vector Packing
UR - http://www.scopus.com/inward/record.url?scp=85077458034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077458034&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.FSTTCS.2019.26
DO - 10.4230/LIPIcs.FSTTCS.2019.26
M3 - Conference contribution
AN - SCOPUS:85077458034
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019
A2 - Chattopadhyay, Arkadev
A2 - Gastin, Paul
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019
Y2 - 11 December 2019 through 13 December 2019
ER -