The Solar Oscillations Investigation - Michelson Doppler Imager

P. H. Scherrer, R. S. Bogart, R. I. Bush, J. T. Hoeksema, A. G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T. D. Tarbell, A. Title, C. J. Wolfson, I. Zayer

Research output: Contribution to journalArticlepeer-review

2080 Scopus citations


The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives. The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 mÅ. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4″ over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument. To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25″) field centered about 160″ north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field. MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.

Original languageEnglish (US)
Pages (from-to)129-188
Number of pages60
JournalSolar Physics
Issue number1-2
StatePublished - Dec 1995
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'The Solar Oscillations Investigation - Michelson Doppler Imager'. Together they form a unique fingerprint.

Cite this