TY - JOUR
T1 - Time-Aware Attention-Based Gated Network for Credit Card Fraud Detection by Extracting Transactional Behaviors
AU - Xie, Yu
AU - Liu, Guanjun
AU - Yan, Chungang
AU - Jiang, Changjun
AU - Zhou, Meng Chu
N1 - Funding Information:
This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB2100801 and in part by the Opening Project of Shanghai Trusted Industrial Control Platform under Grant TICPSH202103001-ZC
Publisher Copyright:
© 2014 IEEE.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - With the popularity of credit cards worldwide, timely and accurate fraud detection has become critically important to ensure the safety of their user accounts. Existing models generally utilize original features or manually aggregated features as their transactional representations, while they fail to reveal the hidden fraudulent behaviors. In this work, we propose a novel model to extract transactional behaviors of users and learn new transactional behavioral representations for credit card fraud detection. Considering the characteristics of transactional behaviors, two time-aware gates are designed in a recurrent neural net unit to learn long- and short-term transactional habits of users, respectively, and to capture behavioral changes of users caused by different time intervals between their consecutive transactions. A time-aware-attention module is proposed and employed to extract the behavioral information from their consecutive historical transactions with time intervals, which enables the proposed model to capture behavioral motive and periodicity inside their historical transactional behaviors. An interaction module is designed to learn more comprehensive and rational representations. To prove the effectiveness of the learned transactional behavioral representations, experiments are conducted on a large real-world transaction dataset and a public one. The results show that the learned representation can well distinguish fraudulent behaviors from legitimate ones, and the proposed method can improve the performance of credit card fraud detection in terms of various evaluation criteria over the state-of-the-art methods.
AB - With the popularity of credit cards worldwide, timely and accurate fraud detection has become critically important to ensure the safety of their user accounts. Existing models generally utilize original features or manually aggregated features as their transactional representations, while they fail to reveal the hidden fraudulent behaviors. In this work, we propose a novel model to extract transactional behaviors of users and learn new transactional behavioral representations for credit card fraud detection. Considering the characteristics of transactional behaviors, two time-aware gates are designed in a recurrent neural net unit to learn long- and short-term transactional habits of users, respectively, and to capture behavioral changes of users caused by different time intervals between their consecutive transactions. A time-aware-attention module is proposed and employed to extract the behavioral information from their consecutive historical transactions with time intervals, which enables the proposed model to capture behavioral motive and periodicity inside their historical transactional behaviors. An interaction module is designed to learn more comprehensive and rational representations. To prove the effectiveness of the learned transactional behavioral representations, experiments are conducted on a large real-world transaction dataset and a public one. The results show that the learned representation can well distinguish fraudulent behaviors from legitimate ones, and the proposed method can improve the performance of credit card fraud detection in terms of various evaluation criteria over the state-of-the-art methods.
KW - Attention
KW - credit card fraud detection
KW - representation learning
KW - transactional behavior
UR - http://www.scopus.com/inward/record.url?scp=85127483422&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127483422&partnerID=8YFLogxK
U2 - 10.1109/TCSS.2022.3158318
DO - 10.1109/TCSS.2022.3158318
M3 - Article
AN - SCOPUS:85127483422
SN - 2329-924X
VL - 10
SP - 1004
EP - 1016
JO - IEEE Transactions on Computational Social Systems
JF - IEEE Transactions on Computational Social Systems
IS - 3
ER -