Towards prioritizing user-related issue reports of mobile applications

Ehsan Noei, Feng Zhang, Shaohua Wang, Ying Zou

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


The competitive market of mobile applications (apps) has driven app developers to pay more attention to addressing the issues of mobile apps. Prior studies have shown that addressing the issues that are reported in user-reviews shares a statistically significant relationship with star-ratings. However, despite the prevalence and importance of user-reviews and issue reports prioritization, no prior research has analyzed the relationship between issue reports prioritization and star-ratings. In this paper, we integrate user-reviews into the process of issue reports prioritization. We propose an approach to map issue reports that are recorded in issue tracking systems to user-reviews. Through an empirical study of 326 open-source Android apps, our approach achieves a precision of 79% in matching user-reviews with issue reports. Moreover, we observe that prioritizing the issue reports that are related to user-reviews shares a significant positive relationship with star-ratings. Furthermore, we use the top apps, in terms of star-ratings, to train a model for prioritizing issue reports. It is a good practice to learn from the top apps as there is no well-established approach for prioritizing issue reports. The results show that mobile apps with a similar prioritization approach to our trained model achieve higher star-ratings.

Original languageEnglish (US)
Pages (from-to)1964-1996
Number of pages33
JournalEmpirical Software Engineering
Issue number4
StatePublished - Aug 15 2019

All Science Journal Classification (ASJC) codes

  • Software


  • Issue report prioritization
  • Issue tracking system
  • Mobile application
  • User-review


Dive into the research topics of 'Towards prioritizing user-related issue reports of mobile applications'. Together they form a unique fingerprint.

Cite this