Training probabilistic spiking neural networks with first- to-spike decoding

Alireza Bagheri, Osvaldo Simeone, Bipin Rajendran

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Third-generation neural networks, or Spiking Neural Networks (SNNs), aim at harnessing the energy efficiency of spike-domain processing by building on computing elements that operate on, and exchange, spikes. In this paper, the problem of training a two-layer SNN is studied for the purpose of classification, under a Generalized Linear Model (GLM) probabilistic neural model that was previously considered within the computational neuroscience literature. Conventional classification rules for SNNs operate offline based on the number of output spikes at each output neuron. In contrast, a novel training method is proposed here for a first-to-spike decoding rule, whereby the SNN can perform an early classification decision once spike firing is detected at an output neuron. Numerical results bring insights into the optimal parameter selection for the GLM neuron and on the accuracy-complexity trade-off performance of conventional and first-to-spike decoding.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2986-2990
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - Sep 10 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: Apr 15 2018Apr 20 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period4/15/184/20/18

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • First-to-spike decoding
  • Generalized Linear Model (GLM)
  • Neuromorphic computing
  • Spiking Neural Network (SNN)

Fingerprint

Dive into the research topics of 'Training probabilistic spiking neural networks with first- to-spike decoding'. Together they form a unique fingerprint.

Cite this