Abstract
Paleoecological estimation is fundamental to the reconstruction of evolutionary and environmental histories. The ant fossil record preserves a range of species in three-dimensional fidelity and chronicles faunal turnover across the Cretaceous and Cenozoic; taxonomically rich and ecologically diverse, ants are an exemplar system to test new methods of paleoecological estimation in evaluating hypotheses. We apply a broad extant ecomorphological dataset to evaluate random forest machine learning classification in predicting the total ecological breadth of extinct and enigmatic hell ants. In contrast to previous hypotheses of extinction-prone arboreality, we find that hell ants were primarily leaf litter or ground-nesting and foraging predators, and by comparing ecospace occupations of hell ants and their extant analogs, we recover a signature of ecomorphological turnover across temporally and phylogenetically distinct lineages on opposing sides of the Cretaceous-Paleogene boundary. This paleoecological predictive framework is applicable across lineages and may provide new avenues for testing hypotheses over deep time.
Original language | English (US) |
---|---|
Pages (from-to) | E147-E162 |
Journal | American Naturalist |
Volume | 202 |
Issue number | 6 |
DOIs | |
State | Published - Dec 2023 |
All Science Journal Classification (ASJC) codes
- Ecology, Evolution, Behavior and Systematics
Keywords
- ants
- machine learning
- morphology
- paleoecology