TY - GEN
T1 - Transient flow induced by the adsorption of particles
AU - Musunuri, N.
AU - Dalal, B.
AU - Codjoe, D.
AU - Fischer, I.
AU - Singh, P.
PY - 2013
Y1 - 2013
N2 - When small particles, e.g., glass, flour, pollen, etc., come in contact with a fluid-liquid interface they disperse so quickly to form a monolayer on the interface that it appears explosive, especially on the surface of mobile liquids like water. This is a consequence of the fact that the adsorption of a particle in an interface causes a lateral flow on the interface away from the particle. In this study we use the particle image velocimetry (PIV) technique to measure the transient three-dimensional flow that arises due to the adsorption of spherical particles. The PIV measurements show that the flow develops a fraction of a second after the adsorption of the particle and then persists for several seconds. The fluid below the particle rises upwards and on the surface moves away from the particle. These latter PIV results are consistent with the surface-velocity measurements performed in earlier studies. The strength of the induced flow, and the time duration for which the flow persists, both decrease with decreasing particle size.
AB - When small particles, e.g., glass, flour, pollen, etc., come in contact with a fluid-liquid interface they disperse so quickly to form a monolayer on the interface that it appears explosive, especially on the surface of mobile liquids like water. This is a consequence of the fact that the adsorption of a particle in an interface causes a lateral flow on the interface away from the particle. In this study we use the particle image velocimetry (PIV) technique to measure the transient three-dimensional flow that arises due to the adsorption of spherical particles. The PIV measurements show that the flow develops a fraction of a second after the adsorption of the particle and then persists for several seconds. The fluid below the particle rises upwards and on the surface moves away from the particle. These latter PIV results are consistent with the surface-velocity measurements performed in earlier studies. The strength of the induced flow, and the time duration for which the flow persists, both decrease with decreasing particle size.
UR - http://www.scopus.com/inward/record.url?scp=84893014335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893014335&partnerID=8YFLogxK
U2 - 10.1115/FEDSM2013-16272
DO - 10.1115/FEDSM2013-16272
M3 - Conference contribution
AN - SCOPUS:84893014335
SN - 9780791855560
T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
BT - ASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013
T2 - ASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013
Y2 - 7 July 2013 through 11 July 2013
ER -