Transition criterion for the multigrid expectation maximization reconstruction algorithm for PET

Timothy F. Doniere, Atam P. Dhawan

Research output: Contribution to journalConference articlepeer-review


The multi-grid expectation maximization algorithm (MGEM), an extension of the maximum likelihood (ML) algorithm, has been applied to the problem of reconstruction in positron emission tomography (PET). The MGEM algorithm implemented the Expectation Maximization (EM) algorithm on different size image grids. The algorithm is based on the idea that the low frequency image components can be recovered faster than the high frequency components. The algorithm begins with a coarse grid, where the low frequency components are recovered. After the low frequency components have been recovered, the solution is projected onto the next finer grid. On the next finer grid, the high frequency components from the previous grid become the low frequency components. The algorithm continues iterating and switching levels until the finest grid has been reached. This method provides faster convergence than the single grid EM algorithm. An important issue concerning the MGEM algorithm is when to stop iterating at a particular grid and project to the next grid, or stop at the finest grid. The convergence rate of the MGEM algorithm was used as a grid level transition criterion. A grid level transition criterion which used the co-occurrence matrix statistics of the reconstructed image is presented. The spatial distribution and dependence among gray levels in a local area of the reconstructed image can be studied by gray level dependent cooccurrence statistics. The second order histogram represents the probability of occurrence of a pair of gray levels separated by a given displacement vector. The features computed from the second-order histogram were entropy, contrast, angular second moment, inverse difference moment, correlation, mean, and deviation. The difference histogram is derived from the second order histogram and represents the probability of occurrence of a difference in gray levels of two pixels separated by a displacement vector. The features extracted from the difference histogram were entropy, contrast, and angular second moment. The behavior of each of the statistics was compared to the the root mean squared (RMS) error, to evaluate the potential for use as a transition criterion. An appropriate window was used to average the variance of each statistic. The indication of switching to the next finer grid level, or of stopping at the finest grid level was provided by a decline in the variance of a statistic. These statistics were computed on an image reconstructed from simulated PET data. Each of the statistics was evaluated versus the number of iterations at each grid level. The transitions for each level occurred when the variance of one of the statistics decreased sharply. For comparison, the single grid EM algorithm was allowed to run for the same amount of CPU time as the MGEM algorithm. The RMS error indicates that the MGEM method, using the cooccurrence statistics as a transition criterion, produced a better reconstruction than the single grid EM algorithm.

Original languageEnglish (US)
Pages (from-to)399-404
Number of pages6
JournalProceedings of SPIE - The International Society for Optical Engineering
StatePublished - May 12 1995
Externally publishedYes
EventMedical Imaging 1995: Image Processing - San Diego, United States
Duration: Feb 26 1995Mar 2 1995

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


  • Emission tomography
  • Expectation maximization
  • Multigrid


Dive into the research topics of 'Transition criterion for the multigrid expectation maximization reconstruction algorithm for PET'. Together they form a unique fingerprint.

Cite this